
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 36, NO. 3, MARCH 2018 397

Joint Virtual Switch Deployment and Routing
for Load Balancing in SDNs

Xuwei Yang, Hongli Xu, Member, IEEE, Liusheng Huang, Member, IEEE,
Gongming Zhao, Peng Xi, and Chunming Qiao, Fellow, IEEE,

Abstract— To better serve a diversity of flows, load balancing
is crucial to ensure operational efficiency. However, previous
works for load balancing have several disadvantages: 1) limited
applicability with sub-flow scheduling (e.g., LetFlow); 2) hash
collision (e.g., ECMP); or 3) transient network congestion due
to reactive scheduling for traffic dynamics (e.g., Hedera and
DevoFlow). An important reason for the above disadvantages
is that it is difficult to provide fully fine-grained flow control for
load balancing in an SDN as the flow table size of each SDN
switch is usually limited. Inspired by the fact that a virtual
switch (vswitch) has more powerful processing capacity and
more flow entries compared with a physical switch, the previous
work (e.g., Presto) deploys one vswitch for each ingress switch,
and achieves the load balancing through efficient flow routing.
However, this mechanism may lead to high cost and not well deal
with topology asymmetry. Thus, this paper proposes to achieve
the load balancing by incrementally deploying a certain number
of vswitches in an SDN. We formulate the joint optimization of
vswitch deployment and routing (JVR) problem as an integer
linear program, and prove its NP-hardness. A rounding-based
algorithm with bounded approximation factors is proposed to
solve the JVR problem. We implement the proposed algorithm on
an SDN testbed for experimental studies and use simulations for
large-scale investigation. The experimental results and simulation
results show high efficiency of our algorithm. For example, our
proposed algorithm can reduce the link load ratio by about 41.5%
compared with ECMP by deploying a small number of virtual
switches.

Index Terms— Software defined networks, load balancing,
virtual switch deployment, rounding, approximation.

I. INTRODUCTION

ATYPICAL SDN consists of a logical controller in the
control plane and a set of switches in the data plane. The

controller monitors the network and determines the forwarding
path of each flow. The switches execute different operations

Manuscript received October 3, 2017; revised February 5, 2018; accepted
February 27, 2018. Date of publication March 12, 2018; date of current
version May 21, 2018. This work was supported in part by NSFC under
Grant 61472383, Grant U1709217, Grant 61728207, and Grant 61472385,
and in part by the Natural Science Foundation of Jiangsu Province in China
under Grant BK20161257. (Corresponding author: Hongli Xu.)

X. Yang, H. Xu, L. Huang, G. Zhao, and P. Xi are with the
School of Computer Science and Technology, University of Science
and Technology of China, Hefei 230027, China, and also with the
Suzhou Institute for Advanced Study, University of Science and Technol-
ogy of China, Suzhou 215123, China (e-mail: issacyxw@mail.ustc.edu.cn;
xuhongli@ustc.edu.cn; lshuang@ustc.edu.cn; zgm1993@mail.ustc.edu.cn;
xipeng@mail.ahnu.edu.cn).

C. Qiao is with the Department of Computer Science and Engineering,
University at Buffalo, The State University of New York, Buffalo, NY
14260 USA (e-mail: qiao@computer.org).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSAC.2018.2815379

(e.g., forwarding or dropping) for flows based on the rules
installed by the controller. Since the controller is able to
provide centralized control for each flow through the header-
packet reporting mechanism [1], an SDN can implement
fine-grained flow management and route control, which help
to improve the network resource utilization compared with
traditional networks [2].

With these advantages, software defined networking has
been widely used in different scenarios, such as data cen-
ters [3] and WANs [2]. Due to versatility and universality
of network applications, software defined networks should
support an increasingly diverse set of workloads, ranging
from small latency-sensitive flows (e.g., search or RPCs [4])
to bandwidth-hungry large flows (e.g., video, big data ana-
lytics, or VM migration). To better serve a diversity of
flows, load balancing is crucial to ensure operational efficiency
and suitable application performance. Thus, many previous
works have been studied on this issue. There are three main
schemes for load balancing, i.e., sub-flow routing, multi-path
forwarding, and reactive flow rerouting. However, we will
demonstrate that all three schemes may not always work well
for SDN scenarios.

The first scheme for load balancing is based on sub-flow
routing or splittable traffic, e.g., LetFlow [5] and Hermes [6].
Though these solutions are able to provide fine-grained traffic
control, and can achieve better load balancing, this scheme
has two critical disadvantages. First, this scheme permits flow
traffic to be splittable. However, it does not always work for
various scenarios. For example, the window adaptation of TCP
flows may be adversely affected if packets of the same flow
follow different paths, which limits the applicability of these
solutions. Second, due to splittable traffic, it also increases the
management difficulty for flow traffic.

To avoid the splittable traffic, the second scheme for
load balancing is multi-path forwarding, e.g., ECMP [7],
based on flow hashing. This mechanism distributes the traffic
of different flows on multiple equal-cost paths. Different
from the first scheme (i.e., sub-flow scheduling), the second
scheme requires that one flow will be forwarded just through
a single path. However, it may perform poorly in asymmetric
topologies, which are common in today’s networks due to
heterogeneous network components or link/device failures [8],
[9]. To deal with this weakness, the weighted version of
ECMP, called WCMP [9], is designed. For example,
Zhou et al. [9] assign different weights for paths based on
link load distribution. While ECMP or WCMP are applied in
an SDN, the group table is necessary to support multi-path
forwarding. However, both two methods do not consider

0733-8716 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

398 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 36, NO. 3, MARCH 2018

the detailed method to install group entries for multi-path
routing. Since the number of group entries is often less than
the number of flow entries, and the number of operation
rules (i.e., action buckets specified in OpenFlow) supported
by each group entry is limited [10], Zhao et al. [11] study
the joint optimization of flow/group tables for load balancing
in the complex setting of large-scale SDNs. However, these
solutions have two main disadvantages. First, since the
multi-path forwarding is usually implemented based on flow
hashing, it causes congestion when hash collisions occur [12],
[13]. Second, these methods route flows often based on the
traffic prediction, which may not be exactly accurate. Due to
traffic dynamics, the network may still be load imbalance.

The third scheme of load balancing is implemented by
reactive flow rerouting, i.e., combining the default paths and
per-flow paths. Specifically, the controller pre-deploys default
paths using wildcard rules for all flows, and then reroutes some
elephant flows for better performance, such as Hedera [12],
DevoFlow [14], Planck [13], and HS [15]. These methods can
achieve load balancing with a limited size of flow table on
each switch. Under this scheme, when a new flow arrives
at a switch, it will be directly forwarded to the destination
through the default path without reporting to the controller.
Thus, due to traffic uncertainty, the network congestion can not
be avoided. To alleviate the congestion, these approaches are
fundamentally reactive to congestion by rerouting flows, which
poses additional flow entry operations on switches and requires
extra network infrastructure for real-time traffic counting [13].

An important reason for the above disadvantages is that
it is difficult to provide fully fine-grained flow control for
load balancing in an SDN as the flow table size of each SDN
switch is often limited [14], [16]. Inspired by the fact that a
virtual switch (vswitch or software-implemented switch) has
more powerful processing capacity and more flow entries for
fine-grained control compared with a physical switch [17],
Presto [18] enhances the load balancing based on the virtual
switch. Specifically, all the edge switches are implemented
using vswitches, while the core switches are physical switches.
This makes a strong case for moving network load bal-
ancing functionality out of the core network hardware and
into the software-based edge. However, Presto also results
in two main disadvantages. First, this method is usually fit
for the structured topology, e.g., Fat-Tree [19], in which only
parts of switches are ingress switches, while for unstructured
topologies, e.g., HyperX, it requires to deploy one vswitch
for each physical switch, which leads to a higher deployment
cost and worse scalability. Second, Presto uses the proactive
routing scheme (e.g., ECMP), which may not well deal with
the network asymmetry [5]. To this end, we propose to
deploy some vswitches associated with some (not all) physical
switches. When a flow arrives at a vswitch, the controller
can provide reactive (or fine-grained) route control for this
flow, while other flows are forwarded through the proactive
(or coarse-grained) control. The advantages of our proposed
method are as follows:

1) Since our method does not require the multi-path for-
warding or flow hashing, the hash collision can be
avoided.

2) When a new flow arrives at a vswitch, the controller
can dynamically determine the route path for this flow.
Thus, transient link congestion can also be avoided.

3) Since our method only deploys a certain number of
vswitches in the network, it is scalable and fit for both
structured and unstructured topologies.

The main contribution of this paper is as follows. Different
from Presto, we first introduce a novel solution of duplicate
vswitch deployment while not breaking the legacy network
topology. We then formulate the joint vswitch deployment and
routing (JVR) problem as an integer linear program, and prove
its NP-hardness. A rounding-based algorithm with bounded
approximation factors is proposed to solve the problem. Some
practical issues are discussed to enhance our load balancing
mechanism. We implement the proposed algorithm on an SDN
testbed for experimental studies and use simulations for large-
scale investigation. The experimental results and simulation
results show high efficiency of our proposed algorithm. For
example, our algorithm reduces the link load ratio by about
41.5% compared with ECMP, and achieves similar routing
performance compared with Presto by deploying a small
number of virtual switches.

II. PRELIMINARIES

A. Network and Flow Models

An SDN typically consists of a logically-centralized con-
troller and a set of physical switches (or called pswitches),
V = {v1, . . . , vn}, n = |V |. These pswitches comprise the
data plane of an SDN before deployment. Thus, the network
topology of the data plane can be modeled by G′ = (V, E′),
where E′ = {e′1, . . . , e′l} is the set of directional links
connecting pswitches. Note that the controller may be a
cluster of controllers, which helps to balance the processing
overhead among individual controllers. Since we focus on load
balancing in the data plane, the number of controllers will not
significantly impact our problem. Thus, we assume that there is
only one controller for ease of description. Some key notations
are listed in Table I.

The flow set in the SDN is denoted by Γ = {γ1, . . . , γm},
with m = |Γ|. Through long-term observation or statistics
collection which is supported by OpenFlow protocol, for
each flow γi ∈ Γ, the controller can get the information
including the ingress switch s(γi), the egress switch d(γi),
the traffic throughput, the flow duration, etc. It is worth
noting that, the traffic intensity f(γi) can be measured by
its traffic throughput divided by flow duration. We assume
that all flows are unsplittable for simplicity and ease of flow
management [11]. Under the practical scenarios, flow traffic
may vary dynamically. To deal with this situation, we will
design dynamic flow routing mechanism in Section IV-C.

B. Two Strategies of vSwitch Deployment

In addition to the pswitches, there is another category of
devices in the data plane called virtual switch, which is based
on software implementation, e.g., OVS [20]. Since a vswitch

YANG et al.: JOINT VIRTUAL SWITCH DEPLOYMENT AND ROUTING FOR LOAD BALANCING IN SDNs 399

Fig. 1. Two strategies of vswitch deployment. There are four pswitches {v1, v2, v3, v4} and two hosts {h1, h2} in the original network. We will deploy
vswitch u1 as a duplicate of v1. Solid lines, dashed lines and thick lines denote links in the original network, the incremental links after vswitch deployment
and paths from h1 to h2, respectively.

TABLE I

KEY NOTATIONS

has a large amount of flow entries [17], it has more fine-
granularity control ability compared with a pswitch, and helps
to improve the performance of flow scheduling in SDNs [18].

We introduce the duplicate vswitch deployment
approach. Assume that the neighbor set of pswitch vi

in an SDN is denoted by N(vi). When a vswitch ui is
deployed as a duplicate of pswitch vi, this vswitch will be
connected to vi and its neighboring physical switches in
set N(vi). There are two strategies of duplicate vsiwtch
deployment in an SDN, illustrated through an example
in Fig. 1. The original network, in Fig. 1(a), contains four
pswitches {v1, v2, v3, v4} and two hosts {h1, h2}. We will
deploy vswitch u1 as a duplicate of pswitch v1.

1. For the first deployment strategy, this pswitch vi connects
with these hosts via the duplicated vswitch ui. As shown
in Fig. 1(b), host h1 connects to u1, and u1 will connect
to three pswitches {v1, v2, v4}. Under this case, the con-
troller may choose the path (i.e., h1 → u1 → v2 → v3 →
h2) or the other path (i.e., h1 → u1 → v4 → v3 → h2)
from h1 to h2 according to the state of the current
network. This strategy breaks the connection between vi

and its associated hosts.
2. The second deployment strategy adds (1) a directional

link from vi to ui and (2) directional links from ui

to all the pswitches in N(vi). This is an alternative
version of the first strategy. As shown in Fig. 1(c), u1

will connect with three pswitches {v1, v2, v4}. Under this
case, the controller should install a rule on pswitch v1

so that all flows from h1 will be directly forwarded
to vswitch u1, and may choose the path (i.e., h1 →
v1 → u1 → v2 → v3 → h2) or the other path (i.e.,
h1 → v1 → u1 → v4 → v3 → h2) from h1 to h2.

Obviously, the second strategy will not break the original
connection between vi and attached hosts, which is conve-
nient for vswitch deployment. In the following, we adopt
the second strategy in problem definition and algorithm
description. In fact, our proposed algorithm will work for
both two strategies. It is worth noting that, the experiment
results in Section V-B shows that the additional delay caused
by a vswitch is small and will not significantly affect the
user’s QoS.

C. Impact of Flow Routing on vSwitch Deployment

One may think that a natural way is to deploy vswitches on
the locations that can control more flows or traffics, which
is of benefit to routing performance in general. However,
it is not always the case for the following reasons. First,
the routing performance depends on the network topology and
traffic distribution. It may be inefficient if we ignore the impact
of network topology. Second, besides network topology and
traffic distribution, flow routing also significantly impacts the
network performance [2]. Third, the natural way may lead
to routing performance reduction and can not guarantee the
bounded approximation performance. Therefore, it is of sig-
nificance to study the joint optimization of vswitch deployment
and routing for load balancing in SDNs.

D. Problem Definition

In this section, we give the definition of the joint vswitch
deployment and routing (JVR) problem. To enhance the load
balancing, we first deploy k virtual switches (e.g., OVS) as
duplicates of chosen pswitches, where k is a predefined con-
stant and determined by the deployment budget. In addition,
the controller needs to install a wildcard rule that matches all
flows generated from its adjacent terminals on each chosen

400 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 36, NO. 3, MARCH 2018

pswitch and route all these flows to duplicate vswitch. The
final topology after vswitch deployment is denoted by G.

Due to the limited size of a flow table on a pswitch,
we assume that the controller has deployed default paths on
these pswitches [14], [18]. For simplicity, the default path from
vi ∈ V to vj ∈ V is denoted by p

vj
vi , which will be further

discussed in Section IV-A. There are two routing strategies
for new-arrival flows. (1) If a flow arrives at a vswitch, this
vswitch reports its header packet to the controller, which will
choose one feasible path for this flow. (2) Otherwise, this flow
will be forwarded through the default path. For flow γ that
arrives at a vswitch, its ingress and egress switches are denoted
by s(γ) and d(γ). For the ingress switch s(γ), the deployed
duplicate vswitch is denoted by u, and the neighbor switch
set is N(s(γ)). We construct a feasible path set Pγ for flow
γ as follows: for each pswitch v ∈ N(s(γ)), we add the path
e(s(γ), u) + e(u, v) + p

d(γ)
v to Pγ if this path is loop-free.

Then, the controller will choose a feasible path p ∈ Pγ for
this flow. We measure the traffic load l(e) of link e. Assume
that the capacity of link e is denoted by c(e). The link load
ratio is defined as λ = max{ l(e)

c(e) , e ∈ E}. Our objective is
to minimize the maximum link load ratio, i.e., min λ.

To formulate the JVR problem, we construct a super-
graph based on the original topology. Specifically, for each
pswitch vi, we add a duplicate vswitch ui. As described
in Section II-B, we also add (1) a directional link from
vi to ui, and (2) some links from vswitch ui to each
neighbor pswitch of vi. After vswitch deployment, the link
set in the super-graph is denoted by Es. θγ denotes the
default path of flow γ. We give the formulation of JVR as
follows:

min λ

S.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

v∈V
xv ≤ k

∑

p∈Pγ

yp
γ = 1, ∀γ ∈ Γ

∑

p∈Pγ\θγ

yp
γ ≤ xs(γ), ∀γ ∈ Γ

∑

γ∈Γ

∑

e∈p:p∈Pγ

yp
γ

· f(γ) ≤ λ · c(e), ∀e ∈ Es

xv ∈ {0, 1} , ∀v ∈ V

yp
γ ∈ {0, 1} , ∀p ∈ Pγ , ∀γ ∈ Γ

(1)

where xv denotes whether there deploys a duplicate vswitch
for pswitch v or not, and yp

γ denotes whether the flow γ will
select the path p ∈ Pγ or not. The first inequality means that at
most k vswitches will be deployed in the network. The second
set of constraints tells that each flow γ must select one path in
feasible path set Pγ . The third set of constraints means that the
controller can dynamically choose a feasible path for flow γ if
there deploys a duplicate vswitch for its ingress switch s(γ).
The fourth set of inequalities measures the traffic load on each
link e. The objective is to achieve the load balancing on the
links, that is, min λ.

Theorem 1: The JVR problem is NP-hard.
We can show that the multi-commodity flow (MCF) with

minimum congestion problem [21] is a special case of the JVR
problem. Thus, the JVR problem is NP-hard too.

III. ALGORITHM DESIGN

A. Rounding-Based Algorithm for JVR

In this section, we design a rounding-based algorithm
RBVR for vswitch deployment. To solve the integer linear
program in Eq. (1), the algorithm first constructs a linear
program as a relaxation of the JVR problem. Specifically,
we relax the variables {xv} and {yp

γ} to be fractional. The
number of vswitches is permitted to be fractional, and the
traffic of each flow γ can be arbitrarily split on feasible paths.
We formulate the linear program LP1.

min λ

S.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

v∈V
xv ≤ k

∑

p∈Pγ

yp
γ = 1, ∀γ ∈ Γ

∑

p∈Pγ\θγ

yp
γ ≤ xs(γ), ∀γ ∈ Γ

∑

γ∈Γ

∑

e∈p:p∈Pγ

yp
γ

· f(γ) ≤ λ · c(e), ∀e ∈ Es

xv ∈ [0, 1], ∀v ∈ V

yp
γ ∈ [0, 1], ∀p ∈ Pγ , ∀γ ∈ Γ

(2)

Since Eq. (2) is a linear program, the first step of
RBVR solves it in polynomial time with a linear program
solver. Assume that the optimal solutions for Eq. (2) are
denoted by {x̃v} and {ỹp

γ}, and the optimal result is denoted
by λ̃. As Eq. (2) is a relaxation of the JVR problem, λ̃ is a
lower-bound result for JVR.

The second step will determine how to deploy vswitches
and select one of the feasible paths for every flow. We obtain
integer solutions {x̂v} and {ŷp

γ} with v ∈ V and p ∈ Pγ

using the randomized rounding method [22]. For each ingress
switch v, the algorithm sets x̂v to 1 with probability x̃v

independently, which means that a vswitch will be deployed
for switch v. Otherwise, x̂v is set to 0, which means no
vswitch will be deployed for switch v. We then select a path
for flow γ according to the rounding result of x̂s(γ). There
are two cases for the ingress switch s(γ). (1) If there is no
vswitch for s(γ) (or x̂s(γ) = 0), we only select the default
path θγ for flow γ. (2) If there deploys a vswitch for s(γ)
(or x̂s(γ) = 1), we randomly choose one path p ∈ Pγ as
the route path of flow γ with probability w(p). Specifically,

if p is the default path θγ , its probability w(p) is
�xs(γ)+�y

θγ
γ −1

�xs(γ)
.

Note that x̃s(γ) + ỹ
θγ
γ − 1 ≥ 0 because of the third set of

inequalities in Eq. (2). Otherwise, the probability w(p) of path
p is

�yp
γ

�xs(γ)
. By the end of this step, we have determined the

vswitch deployment and flow routing. The RBVR algorithm
is formally described in Alg. 1.

B. Performance Analysis

This section analyzes the approximation performance of the
proposed RBVR algorithm. We first give two famous theorems
for probability analysis.

Theorem 2 (Chernoff Bound): Given n independent vari-
ables: z1, z2, . . . , zn, where ∀zi ∈ [0, 1]. Let μ = E[

∑n
i=1 zi].

YANG et al.: JOINT VIRTUAL SWITCH DEPLOYMENT AND ROUTING FOR LOAD BALANCING IN SDNs 401

Algorithm 1 RBVR: Rounding-Based Algorithm for JVR
1: Step 1: Solving the Relaxed JVR Problem
2: Construct a linear program LP1 in Eq. (2)
3: Obtain the optimal solutions {x̃v} and {ỹp

γ}
4: Step 2: Deploying vswitches for load balancing
5: Derive integer solutions {x̂v} and {ŷp

γ} with v ∈ V and
p ∈ Pγ

6: for each v ∈ V do
7: Set x̂v to 1 with probability x̃v

8: for each γ ∈ Γ do
9: if x̂s(γ) = 0 then

10: Set ŷ
θγ
γ to 1 and yp

γ to 0, where p ∈ Pγ \ θγ

11: if x̂s(γ) = 1 then

12: Set ŷ
θγ
γ to 1 with probability

�xs(γ)+�y
θγ
γ −1

�xs(γ)
or

set ŷp
γ , p ∈ Pγ \ θγ , to 1 with probability

�yp
γ

�xs(γ)

13: Deploy a vswitch for switch v if x̂v = 1 and Select path
p for flow γ if ŷp

γ = 1

Then, Pr
[

n∑

i=1

zi ≥ (1 + ε)μ
]

≤ e
−ε2μ
2+ε , where ε is an arbi-

trary positive value.
Theorem 3 (Union Bound): Given a countable set of n

events: A1, A2, . . . , An, each event Ai happens with possi-

bility Pr(Ai). Then, Pr(A1 ∪ A2 ∪ . . . ∪ An) ≤
n∑

i=1

Pr(Ai).

We then give the approximation performance for vswitch
constraint.

Theorem 4: After the rounding process, the number of
deployed vswitches will not exceed the vswitch constraint k
by a factor of 2 log n

k + 3.
Proof: We use a variable ϕv to denote whether a vswitch

is deployed for pswitch v or not. According to Line 7 of
the RBVR algorithm, we set x̂v to 1 with probability x̃v .
Otherwise, x̂v is set to 0. Thus, the expectation E[ϕv] is x̃v .
The expected number of required vswitches is:

E

[
∑

v∈V

ϕv

]

=
∑

v∈V

E[ϕv] =
∑

v∈V

x̃v ≤ k (3)

As ϕv is a 0-1 integer variable, we can directly apply
Theorem 2. Assume that σ is an arbitrary positive value.
It follows:

Pr

[
∑

v∈V

ϕv ≥ (1 + σ)k

]

≤ e
−σ2k
2+σ (4)

Now, we assume that

Pr

[
∑

v∈V

ϕv ≥ (1 + σ)k

]

≤ e
−σ2k
2+σ ≤ H (5)

where H is the function of network-related variables (such as
the number of switches n, etc.) and H → 0 when the network
size grows.

The solution for Eq. (5) can be expressed as:

σ ≥
log 1

H +
√

log2 1
H + 8 k log 1

H
2k

(6)

Set H = 1
n2 . Apparently H → 0 as n → ∞. With respect

to Eq. (6), we set

σ =
log 1

H + log 1
H + 4k

2k

=
4 log n + 4k

2k
=

2 logn

k
+ 2 (7)

Then Eq. (7) is guaranteed with 1 + σ = 2 log n
k +

3. That means, after the rounding process, the total num-
ber of deployed vswitches will not exceed k by a factor
of 2 log n

k + 3.
In the following, we analyze the approximation performance

for the link capacity constraint. We first show that the algo-
rithm can guarantee that the controller will choose one path
for each flow even with randomized rounding.

Lemma 5: The controller will choose a route path for each
flow.

Proof: As described in the second step of the CRBVR
algorithm, for each flow γ, there are two cases for its ingress
switch s(γ). On one hand, there is no duplicate vswitch for
s(γ) or x̂s(γ) = 0, the algorithm will assign the default
path for flow γ. On the other hand, one duplicate vswitch
is deployed for s(γ) or x̂s(γ) = 1. We will show that the total
probability assigned for all feasible paths of each flow is 1,
which ensures a route path for this flow.

As described in the second step of the CRBVR algorithm,
the probability that the controller selects path θγ as the route
is

Pr
[
ŷθγ

γ = 1
]

= Pr
[
ŷθγ

γ = 1 | x̂s(γ) = 1
] · Pr

[
x̂s(γ) = 1

]

+Pr
[
ŷθγ

γ = 1 | x̂s(γ) = 0
] · Pr

[
x̂s(γ) = 0

]

=
x̃s(γ) + ỹ

θγ
γ − 1

x̃s(γ)
· x̃s(γ) + 1

· (1 − x̃s(γ)) = ỹθγ
γ (8)

Similarly, the probability that the controller selects path p ∈
Pγ \ θγ as the route is

Pr
[
ŷp

γ = 1
]

= Pr
[
ŷp

γ = 1 | x̂s(γ) = 1
] · Pr

[
x̂s(γ) = 1

]

=
ỹp

γ

x̃s(γ)
· x̃s(γ) = ỹp

γ (9)

According to Eqs. (8) and (9), we have:
∑

p∈Pγ

Pr
[
ŷp

γ = 1
]

= Pr
[
ŷθγ

γ = 1
]
+

∑

p∈Pγ\θγ

Pr
[
ŷp

γ = 1
]

= ỹθγ
γ +

∑

p∈Pγ\θγ

ỹp
γ =

∑

p∈Pγ

ỹp
γ = 1 (10)

Eq. (10) means that one path p ∈ Pγ should be selected for
flow γ.

Lemma 6: The RBVR algorithm can guarantee that the
expected traffic load on each link e from γ after the second
step is same as the solution l̃(e, γ) of the linear program LP1.

Proof: Let variable ηe,γ denote the total traffic load of
link e from flow γ. We use l̃(e, γ) to denote the traffic load
of link e from γ by the result of the linear program LP1.

402 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 36, NO. 3, MARCH 2018

Moreover, τp
e means whether link e belongs to path p or not.

The expectation of variable ηe,γ is:

E [ηe,γ] = Pr
[
ŷθγ

γ = 1
] · τp

e +
∑

p∈Pγ\θγ

Pr
[
ŷp

γ = 1
] · τp

e

= ỹθγ
γ · τθγ

e +
∑

p∈Pγ\θγ

ỹp
γ · τp

e =
∑

p∈Pγ

ỹp
γ · τp

e

= l̃(e, γ) (11)

Note that the second equality holds according to Eqs. (8) and
(9). Eq. (11) shows that the expected traffic load of each link
after the second step is same as the solution of the linear
program LP1.

Assume that the minimum capacity of all links is denoted
by cmin(e). We define a constant value α as follows:

α = min{ λ̃ · cmin(e)
f(γ)

, γ ∈ Γ} (12)

Under many practical application scenarios, the flow intensity
is usually much less than the link capacity, because the flow
intensity is not more than the corresponding host-switch link
capacity [16], [23]. Thus, it is reasonable to assume that α 	
1.

Theorem 7: The proposed RBVR algorithm guarantees that
the total traffic on any link e ∈ E will not exceed the traffic
of the fractional solution by a factor of 3 log n

α + 3.
Proof: The traffic load of link e after the first step is

denoted by l̃(e). By the definition, variables ηe,γ with γ ∈ Γ
are mutually independent. According to Eq. (11), the expected
traffic load on link e is:

E

⎡

⎣
∑

γ∈Γ

ηe,γ

⎤

⎦ =
∑

γ∈Γ

E [ηe,γ] =
∑

γ∈Γ

l̃(e, γ) = l̃(e) (13)

By the fourth set of inequalities in Eq. (2), we have:

l̃(e) =
∑

γ∈Γ

∑

e∈p:p∈Pγ

ỹp
γ · f(γ) ≤ λ̃ · c(e) (14)

Combining Eqs. (13), (14) and the definition of α in
Eq. (12), we have:

⎧
⎪⎪⎨

⎪⎪⎩

ηe,γ · α
λ̃c(e)

∈ [0, 1]

E

[
∑

γ∈Γ

ηe,γ · α
λ̃ · c(e)

]

≤ α.
(15)

By applying Theorem 2, assume that ρ is an arbitrary
positive value. It follows:

Pr

⎡

⎣
∑

γ∈Γ

ηe,γ · α
λ̃ · c(e)

≥ (1 + ρ)α

⎤

⎦ ≤ e
−ρ2α
2+ρ (16)

Now, we assume that

Pr

⎡

⎣
∑

γ∈Γ

ηe,γ

λ̃ · c(e)
≥ (1 + ρ)

⎤

⎦ ≤ e
−ρ2α
2+ρ ≤ F

n2
(17)

where F is the function of network-related variables (such as
the number of switches n, etc.) and F → 0 when the network
size grows.

The solution for Eq. (17) can be expressed as:

ρ ≥
log n2

F +
√

log2 n2

F + 8α log n2

F
2α

, n ≥ 2 (18)

Set F = 1
n2 . Eq. (17) is transformed into:

Pr

⎡

⎣
∑

γ∈Γ

ηe,γ

λ̃ · c(e) ≥ (1 + ρ)

⎤

⎦ ≤ 1
n4

, where ρ =
4 log n

α
+ 2

(19)

By applying Theorem 3, we have,

Pr

⎡

⎣
∨

e∈E

∑

γ∈Γ

ηe,γ

λ̃ · c(e) ≥ (1 + ρ)

⎤

⎦

≤
∑

e∈E

Pr

⎡

⎣
∑

γ∈Γ

ηe,γ

λ̃ · c(e) ≥ (1 + ρ)

⎤

⎦

≤ [
1
2
n(n − 1) + n2] · 1

n4

≤ 3
2
n2 · 1

n4
=

3
2n2

, ρ =
4 logn

α
+ 2 (20)

Note that the third inequality holds, because there are at
most 1

2n(n−1) links in the original network G′ and n2 incre-
mental links when there are n vswitches in an SDN. Eq. (20)
means that the proposed RBVR algorithm can guarantee that
the total traffic on any link e ∈ E will not exceed the fractional
solution by a factor of 1 + ρ = 4 log n

α + 3.
Approximation Factors: Following from our analyses,

the vswitch constraint will not be violated by a factor of
2 log n

k + 3, and the link capacity will hardly be violated by
a factor of more than 4 log n

α + 3 by routing a full percentage
of flows on each chosen path. It means that the algorithm can
achieve the optimal solution, violating the vswitch constraint
by a factor 2 log n

k + 3 and the link capacity constraint by a
factor 4 log n

α + 3 at most, which is also called as bi-criteria
approximation [16]. By using the traffic controlling method,
the intensity of each flow can be limited to a specific value,
so that the network congestion can be avoided.

We should address that, in most situations, the RBVR
algorithm can reach almost the constant bi-criteria approxi-
mation. For example, let λ̃ be 0.4 (with a moderate value).
Consider a large-scale network with n = 1000 switches,
so that log n ≈ 10. The link capacity of today’s networks
will be a bandwidth of 1Gbps at least. Observing the practical
flow traces, the maximum intensity of a flow may reach
1Mbps or 10Mbps. Under two cases, cmin(e)

f(γ) will be 103 and
102. The approximation factors for the link capacity constraint
are 3.1 and 4, respectively. Since k is usually at least 100 if
n = 1000, the approximation factor for the virtual switch
constraint is 3.2. In other words, our RBVR algorithm can
achieve almost the constant bi-criteria approximation for the
JVR problem in many network situations.

C. Complete RBVR Algorithm Description

Though the RBVR algorithm can obtain the bi-criteria
approximation performance for the JVR problem, the vswitch

YANG et al.: JOINT VIRTUAL SWITCH DEPLOYMENT AND ROUTING FOR LOAD BALANCING IN SDNs 403

Algorithm 2 CRBVR: Complete Rounding-Based Algo-
rithm for JVR
1: Step 1: Same as that in RBVR
2: Step 2: Same as that in RBVR
3: Step 3: Removing the redundant vswitches
4: Put all switch v with x̂v = 1 into set V

′

5: if |V ′ | ≤ k then
6: algorithm terminates.
7: else if |V ′ | > k then
8: Sort all the switches in set V ′ in the decreasing order of

value x̃v

9: Deploy vswitches for k switches with the largest x̃v

constraint may not be fully satisfied after the randomized
rounding process. We give the complete algorithm, called
CRBVR, so as to satisfy this constraint.

The CRBVR algorithm consists of three main steps.
The former two steps of CRBVR are same as those in Alg. 1.
The third step will remove some vswitches so as to satisfy the
vswitch number constraint. At the beginning of the third step,
let V ′ denote the set of pswitches that have been deployed
duplicate vswitches. If |V ′| ≤ k, the algorithm terminates.
However, if |V ′| > k, we retain k vswitches for duplicate
deployment. Specifically, the algorithm sorts all the pswitches
in set V ′ in the decreasing order of x̃v , and just chooses
k pswitches with the largest x̃v. The CRBVR algorithm is
described in Alg. 2.

IV. PRACTICAL ISSUES FOR SYSTEM IMPLEMENTATION

In this section, we give the detailed description of some
practical issues for system implementation. Our system mainly
consists of three main modules, including system configura-
tion, port traffic statistics collection and dynamic flow routing
(Section IV-B-IV-C). Moreover, we also discuss how to support
multicast in our system (Section IV-D).

A. System Configuration

To construct the default paths for flows, we regard all flows
between any two pswitches as a macroflow. We adopt the
OSPF method [24] to select routes for those macroflows,
and install flow entries for those default paths. As specified
by the Openflow standard [1], each flow entry includes two
fields: idle_timeout and hard_timeout. These two fields control
the removal of a flow entry from the flow table. A flow
entry will be removed, if no packet has been matched by
this entry after a given number of seconds, specified by its
non-zero idle_timeout field. A non-zero hard_timeout field
causes the flow entry to be removed after a given number
of seconds, regardless of how many packets it has matched.
If both parameters are set to zero, this flow entry is considered
to be permanent, and will be removed only by the con-
troller. To implement the default paths, the controller installs
flow entries to each pswitch and sets the idle_timeout and
hard_timeout field of each flow entry as zero. Then, we deter-
mine k pswitches for duplicated vswitch deployment using the
CRBVR algorithm, and build connections between vswitches

and pswitches as described in Section II-B. Moreover, for each
switch v with a duplicate vswitch u, the controller installs a
rule for each connected host on switch v so that all flows from
this host will be directly forwarded to vswitch u. We should
note that, if there is a flow whose source and destination hosts
connect to a same pswitch, the controller needs to install a
rule with higher priority on this pswitch to match this flow in
order to route it to corresponding port in a loop-free fashion.

B. Port Traffic Statistics Collection

During system running, the controller should master
the real-time traffic load on each link to better deal
with traffic dynamics. The openflow standard specifies the
OFPT_PORT_STATUS interface for port traffic statistics col-
lection. Since each link connects with two ports on two
switches, we can collect port statistics only from a subset of
switches to reduce the controller overhead. To this end, we use
the minimum set cover algorithm [25] for port traffic statistics
collection. Specifically, the controller determines from which
switches the port statistics information will be collected and
sends a set of the OFPT_PORT_STATUS requests to specified
switches. After receiving these requests, the switch will report
the statistics information of all ports to the controller. As a
result, the controller can know the accurate traffic information
of all ports (links).

C. Dynamic Flow Routing

When a new flow arrives at a vswitch, this vswitch reports
the header-packet to the controller, which will dynamically
determine its route path. In this paper, we introduce a simple
and efficient routing mechanism, in which the controller
chooses the least-congestion route path with flow-table size
constraint for each new-arrival flow. Specifically, the controller
knows the link traffic load (or the link load ratio) by collecting
the port statistics information. For each switch, since the flow
table is updated by the controller, the controller can derive
the number of occupied flow entries and know whether this
switch can accommodate this flow or not. For each path
p, the congestion of this path is the maximum load ratio
of all links on this path. The controller adopts the Dijkstra
method [25] to explore the route path with the least congestion
for this flow, and installs rules on switches along this path.

D. Multicast Traffic Routing

The multicast mechanism in SDNs is usually implemented
using a joint flow table and group table. The match field of
a flow entry matches corresponding multicast traffic, and the
instructions domain points to the group entry that specifies
the actions bucket for multicast traffic. Each action in the
bucket specifies the operations for traffic, such as forwarding
traffic to a port. It is assumed that the original network
can handle multicast traffic by deploying flow table entries
and group table entries on pswitches. To support multicast
on vswitches, the controller needs to install a wildcard rule
matching all flows from the adjacent hosts on the pswitch’s
flow table. Then, the controller installs proper flow entries and

404 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 36, NO. 3, MARCH 2018

Fig. 2. Our SDN testbed consists of 6 logically physical switches and 7 hosts before vswitch deployment in (a). We deploy two vswitches u2 and u4 as
duplicates of pswitches v2 and v4, shown in (b). Solid lines and dashed lines denote links in the original network and the incremental links after vswitch
deployment, respectively.

group entries on the vswitch to route multicast traffic. Thus,
the vswitch can also support multicast traffic.

V. PERFORMANCE EVALUATION

In this section, we evaluate our proposed algorithm through
both the testbed implementation and the network simula-
tor [26].

A. Performance Metrics and Benchmarks

This paper studies how to deploy vswitches and route
flows for load balancing. We adopt three main metrics for
performance evaluation. After vswitch deployment, when a
flow arrives at a vswitch, the controller can provide fine-
grained control for this flow. We call this flow as a controllable
one. The first metric is the number of controllable flows
(NCF). To evaluate the routing performance, we adopt link
load ratio (LLR) and network throughput factor (NTF) as two
metrics. During system running, we measure the traffic load
l(e) of each link e, and the link load ratio is defined as:
LLR = max{l(e)/c(e), e ∈ E}. The smaller LLR means
better load balancing. When there occurs congestion on some
links, we can only forward fractional traffic to the destination.
For each flow γ, the traffic of δ ·f(γ) at most can be forwarded
from source to destination with congestion avoidance, where δ
is the network throughput factor, with 0 < δ ≤ 1. In general,
if the controller can dynamically control more flows (or with
a larger NCF), the link load ratio will be reduced and the
network throughput can be improved.

To evaluate how well our proposed algorithm performs,
we compare with other three benchmarks. The first benchmark
is the most widely used OSPF method [24]. Each switch
will construct the shortest paths to all other switches. Thus,
the number of required flow entries does not exceed the
number of physical switches in an SDN. The second one is
ECMP [7], which is widely applied in data center networks
for load balancing. It needs to install flow/group entries on
pswitches when there exist several equal-cost paths to the

destination. Otherwise, flows will be forwarded through the
OSPF paths. In the simulations, we use three equal-cost paths
for each switch pair. The final one is Presto [18]. As Presto
adopts the flow segmentation (i.e., splittable traffic) for load
balancing, it is not fit for the TCP flows and increases the addi-
tional traffic management cost. Thus, we modify Presto so that
all flows are unsplittable, and the controller can determine the
dynamic routes for all flows in an SDN. Espresso [27] also puts
the routing selection on the powerful edge server. However
Espresso improves user experience by automatic selection of
the best data center location to serve a particular user, based on
real-time performance measurements, which is different from
the link load balancing problem for a DC or LAN addressed in
this paper. As a result, we choose not to compare our proposed
algorithm with Espresso quantitatively. Note that, for fairness,
all four algorithms adopt the destination-based prefix-match
scheme for default paths in our simulations, so that these
methods require almost the same number of flow entries on
all pswitches.

B. System Implementation on Platform

1) Implementation on the Platform: We implement the
OSPF, ECMP, Presto and CRBVR algorithms on a small-
scale testbed. Our SDN platform is logically comprised of
three parts: a controller, 6 SDN-enabled physical switches and
7 virtual machines (acting as hosts) in Fig. 2(a). As we focus
on the load balancing of data plane, we omit the controller
in Fig. 2(a). To expand the testing topology and collect testing
data conveniently, we adopt the virtualization technology for
system implementation. Specifically, all 6 logically physical
switches are implemented using open virtual switches (version
2.7.2 [20]), and each host is implemented using the kernel-
based virtual machine (KVM). Each open virtual switch and
the connected KVMs are implemented on a server with a
core i5-3470 processor and 8GB of RAM. For example, {v1},
{v2, h1, h2}, {v3}, {v4, h3, h4}, {v5, h5, h6} and {v6,
h7} are run on 6 servers, respectively. The original network

YANG et al.: JOINT VIRTUAL SWITCH DEPLOYMENT AND ROUTING FOR LOAD BALANCING IN SDNs 405

topology is shown in Fig. 2(a). Besides, we use Ryu [28] that
supports the OpenFlow v1.3 standard as the controller software
running on another server with a core i5-3470 processor and
16GB of RAM. Since the controller will not participate into
data forwarding, it is not explicitly included in Fig. 2(a) for
simplicity.

As v2, v4, v5 and v6 directly connect to hosts, they are
ingress switches in the SDN. So, vswitches will only be
deployed as duplicates of these ingress switches. When a
vswitch is deployed, it connects to an ingress switch and all
of its neighbor switches.

2) Flows in the Network: There are roughly two categories
of packets in the networks. One is UDP, the other is TCP.
Our testing uses the UDP packets, and we will adopt the
TCP messages for testing as a future work. When a host
generates a flow, in addition to the destination IP address,
a unique destination UDP port (larger than 50000) is also
specified, so that the controller can distinguish these flows by
the unique destination UDP port and make routing decision.
Through testing on the OVS platform, we find that when the
length of a UDP packet exceeds 1500 bytes, it will be split
into multiple packets, and the transport protocol field cannot
be analyzed by the vswitch. As a result, header information
of different data packets belonging to a same flow will be
reported to the controller repeatedly, which will cause massive
control link overhead, and additional controller response delay.
Thus, we set the size of every data packet to 1300 bytes
uniformly. Moreover, there are 20% elephant flows and 80%
mice flows to simulate the realistic network scenario [14].
We simulate the elephant flows and mice flows by adjusting
different transmitting interval between packets of a flow. The
average flow intensity is 0.85Mbps.

3) Testing Results: We run three sets of testings in the
SDN platform. We first measure the additional delay of
packet forwarding caused by a vswitches. Specifically, we have
performed two tests to measure the delay of packet forwarding
between two hosts connected with (1) a physical switch and
(2) a virtual switch along with a physical switch, respectively.
The packet size in the flow is 1KB uniformly. The gap between
forwarding delays of two tests is the additional delay caused
by a virtual switch, which is shown in Fig. 3. As the flow size
increases exponentially, the additional delay increases almost
linearly. When one host sends a flow contains one million
packets to another, the additional delay caused by a virtual
switch is 5.09ms while the total transmission time is about
8.5s. As specified by ITU G.114 [29], it will not significantly
impact the user’s QoS if the forwarding delay is less than
150ms. In addition, one flow may pass through at most one
virtual switch as described in Fig. 1(c). Thus, we can conclude
that, while there is some delay for flows passing through
a virtual switch, the additional delay is small and will not
significantly affect the user’s QoS.

The second set of testing observes the maximum link
load, which is defined as: MLL = max{l(e), e ∈ E},
by changing the number of deployed vswitches in an SDN.
We generate 800 flows by default in this testing. Fig. 4 shows
that the maximum link load of OSPF, ECMP and Presto is
about 60.7Mbps, 48.0Mbps and 25.3Mbps, respectively. The

Fig. 3. Additional Delay Caused by a virtual switch (ms) vs. flow size.

Fig. 4. Maximum Link Load vs. Number of vSwitches.

Fig. 5. Maximum Link Load vs. Number of Flows.

CRBVR algorithm decreases the maximum link load with the
increasing number of deployed vswitches. Without vswitch,
the maximum link load of CRBVR is almost same as that
of OSPF. When only one vswitch is deployed, CRBVR can
achieve a lower maximum link load compared with ECMP.
When two vswitches are deployed (as duplicates of v2 and v4

by our testing), CRBVR can further reduce the maximum link
load. Specifically, CRBVR reduces the maximum link load
by about 54.4% and 42.4% compared with OSPF and ECMP
respectively when two vswitches are deployed. Moreover,
CRBVR can achieve a similar maximum link load compared
with Presto while CRBVR only requires half number of
vswitches compared with Presto.

The third testing shows the maximum link load by changing
the number of flows in an SDN. We deploy two vswitches
u2 and u4 as duplicates of pswitches v2 and v4 in this
testing, and the topology after vswitch deployment is shown
in Fig. 2(b). The testing results in Fig. 5 indicate that the
maximum link load increases for all four algorithms with
more flows in an SDN. Moreover, CRBVR reduces the
maximum link load by about 46.6% and 39% compared
with OSPF and ECMP, respectively, and achieves similar

406 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 36, NO. 3, MARCH 2018

routing performance as Presto while using only half number of
vswitches.

C. Simulation Evaluation

1) Simulation Setting: We select three practical and typical
topologies for our simulations. The first topology, denoted by
(a), is for campus networks, and contains 100 switches and
200 servers from Monash university [30]. The second one
is the Fat-Tree topology [19], which contains 80 switches
(including 16 core switches, 32 aggregation switches, and
32 edge switches) and 128 servers. The third one is the two-
dimensional HyperX topology [31], denoted by (c), which
contains 64 (ingress) switches and 256 servers. Specifically, all
switches are arranged in an 8×8 square, in which each switch
is connected to other 14 switches in the same row/column
and 4 servers at the same time. We should note that these
topologies represent various networks with different features.
Specifically, the Monash topology (a) is asymmetrical, while
other two topologies are symmetrical for many data center
networks. Meanwhile, Fat-Tree is structured while HyperX is
unstructured. For all three topologies, each link has a uniform
capacity, 10Gbps. Since the number of flow entries on each
pswitch is limited, we deploy default paths on pswitches using
the OSPF method for simplicity.

To simulate the practical traffic scenario, we generate three
types of flows: (1) random flows, whose source and destination
hosts are randomly picked; (2) server flows, which simulate
the traffic between random hosts and a number of designated
servers, e.g., mail servers and web servers; (3) associate flows,
which simulate the traffic between a subnet and a server,
e.g., communications between the finance department and the
finance database or between a hospital and a data center that
houses the patient data. Each type of flows accounts for one
third of total traffic [15]. Curtis et al. [14] have shown that less
than 20% of the top-ranked flows may be responsible for more
than 80% of the total traffic. Thus, we allocate the size for each
flow according to this 2-8 distribution and the expected traffic
demand of each flow is 1Mbps or 2Mbps when LLR or NTF is
the metric respectively. We execute each simulation 100 times
and average the numerical results.

2) Simulation Results: We mainly run three sets of simula-
tions on three different topologies to check the effectiveness of
our proposed algorithm. The first set of simulations observes
the different performance metrics by changing the number of
deployed vswitches. In a practical data center network with
1,500 server clusters [32], the average arrival rate reaches 100k
flows per second (around 67 flows per second per server) and
the duration time of most flows (more than 80%) is less than
10s, so we roughly think that each server provides 670 flows
according to Queue Theory [33]. Since there are at most
256 servers on the topology in our simulations, we set the
default number of flows to 160K (around 640 flows per server),
to make the results of the simulation more credible. First,
we observe the number of controllable flows by changing
the number of deployed vswitches in an SDN. We note that
the Presto system will deploy one vswitch for each ingress
pswitch. As a result, it requires 100, 32 and 64 vswitches for

Fig. 6. Number of Controllable Flows vs. Number of vSwitches for
Topology (a).

Fig. 7. Number of Controllable Flows vs. Number of vSwitches for
Topology (b).

Fig. 8. Number of Controllable Flows vs. Number of vSwitches for
Topology (c).

Monash, Fat-Tree and Hyperx topologies, respectively. The
simulation results are shown in Figs. 6-8. We observe that our
proposed algorithm can control more flows with the increasing
number of vswitches, which means more powerful control
ability for flows. The increasing ratio of controllable flows
is much slower with more vswitches deployed in an SDN.

We then observe the link load ratio by changing the number
of vswitches on three topologies, and the simulation results
are shown in Figs. 9-11. Since the number of vswitches does
not affect the number of controllable flows in the networks
for OSPF, ECMP and Presto, the link load ratio almost keeps
unchanged for these algorithms. When there is no vswitch
in the network, all the flows will be forwarded through the
default paths, and the CRBVR algorithm can not improve
the link load ratio compared with OSPF. With the increasing
number of deployed vswitches, the CRBVR algorithm is able
to control more flows, which helps to reduce the link load
ratio. For example, for topology (b), when there deploys 8 and

YANG et al.: JOINT VIRTUAL SWITCH DEPLOYMENT AND ROUTING FOR LOAD BALANCING IN SDNs 407

Fig. 9. Link Load Ratio vs. Number of vSwitches for Topology (a).

Fig. 10. Link Load Ratio vs. Number of vSwitches for Topology (b).

Fig. 11. Link Load Ratio vs. Number of vSwitches for Topology (c).

16 vswitches respectively, Fig. 10 shows that the link load
ratio is 98.3% and 54.6%, respectively. Moreover, the CRBVR
algorithm can achieve the similar link load ratio compared with
Presto by deploying a few vswitches in an SDN. For example,
when we deploy 30, 16 and 16 vswitches on topologies (a),
(b) and (c), respectively, both CRBVR and Presto can achieve
almost the similar link load ratio while CRBVR saves the
number of vswitches by about 70%, 50%, 75% compared with
Presto on topologies (a), (b) and (c), respectively.

We observe the network throughput factor by changing
the number of deployed vswitches. The simulation results
in Figs. 12-14 show that the network throughput factor keeps
almost unchanged for OSPF, ECMP and Presto. With more
vswitched deployed in an SDN, the CRBVR algorithm can
significantly improve the network throughput factor. For exam-
ple, when there is no vswitch, the NTF of CRBVR is same
as that of OSPF on three topologies, which is consistent
with Figs. 9-11. When we deploy 30, 16, and 8 vswitches
on topologies (a), (b), and (c) respectively, the NTF of our
proposed algorithm is very close to that of Presto.

From the above simulation results, we find that our proposed
CRBVR algorithm can achieve better routing performance

Fig. 12. Network Throughout Factor vs. Number of vSwitches for
Topology (a).

Fig. 13. Network Throughout Factor vs. Number of vSwitches for
Topology (b).

Fig. 14. Network Throughout Factor vs. Number of vSwitches for
Topology (c).

with a small number of vswitches. In the following simula-
tions, we deploy 30, 16, and 16 vswitches by default on three
topologies, respectively.

The second set of simulations observes different perfor-
mance metrics (i.e., NCF, LLR and NTF) by changing the
number of flows from 40K to 320K for four algorithms
on three topologies. Figs. 15-17 show how the number of
flows in an SDN affects the number of controllable flows.
We find that the number of controllable flows is almost linearly
increasing with the increasing number of flows in an SDN. For
a given number (e.g., 200K) of flows, the CRBVR algorithm
can control 85,072 (42.5%), 100,078 (50.0%), and 106,096
(53.0%) flows on three topologies, respectively.

Figs. 18-20 show that the link load ratio rises by chang-
ing the number of flows for all these algorithms. With the
increasing number of flows in an SDN, the OSPF, ECMP,
CRBVR, and Presto algorithms occur congestion (i.e., LLR
is 1) in turn. Our CRBVR algorithm has decent link load ratio
performance on all three topologies. For example, when there

408 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 36, NO. 3, MARCH 2018

Fig. 15. Number of Controllable Flows vs. Number of Flows for
Topology (a).

Fig. 16. Number of Controllable Flows vs. Number of Flows for
Topology (b).

Fig. 17. Number of Controllable Flows vs. Number of Flows for
Topology (c).

Fig. 18. Link Load Ratio vs. Number of Flows for Topology (a).

are 120K flows, the proposed CRBVR algorithm reduces link
load ratio by about 47.7% compared with the OSPF method
on topologies (a). Meanwhile, CRBVR can reduce the link
load ratio by about 41.5% compared with the ECMP method,
which requires extra group entries to implement multi-path
transmission. Comparing with Presto, CRBVR only increases

Fig. 19. Link Load Ratio vs. Number of Flows for Topology (b).

Fig. 20. Link Load Ratio vs. Number of Flows for Topology (c).

Fig. 21. Network Throughout Factor vs. Number of Flows for Topology (a).

the LLR by 3.2%, 5.0% and 5.6% on three topologies while
using only 30%, 50% and 25% vswitches.

Figs. 21-23 indicate that the network throughput factor
decreases with more and more flows for all algorithms on
three topologies. CRBVR can perform better than OSPF and
ECMP obviously. For example, when there are 160K flows on
topology (a), CRBVR improves the network throughput factor
by about 46.0% and 32.4% compared with the OSPF and
ECMP methods, respectively. Meanwhile, the Presto method
improves the network throughput factor by about only 2.1%
while using 3.3 times vswitches compared with CRBVR. In a
word, our CRBVR algorithm has better performance than
OSPF and ECMP, and can achieve similar performance to
Presto while only a small number of vswitches are deployed.
We can get similar conclusions on topologies (b) and (c).

The third set of simulations observes the required number
of vswitches to achieve a good tradeoff between network per-
formance and deployment cost when there are 40K and 160K
flows, respectively. As shown in Fig. 24, the link load ratio
decreases with the increasing number of deployed vswitches
in topology (a). In particular, when 30 vswitches are deployed,
no matter 40K flows or 160K flows, CRBVR achieves similar

YANG et al.: JOINT VIRTUAL SWITCH DEPLOYMENT AND ROUTING FOR LOAD BALANCING IN SDNs 409

Fig. 22. Network Throughout Factor vs. Number of Flows for Topology (b).

Fig. 23. Network Throughout Factor vs. Number of Flows for Topology (c).

Fig. 24. Link Load Ratio vs. Number of vSwitches for Topology (a).

Fig. 25. Link Load Ratio vs. Number of vSwitches for Topology (b).

performance to Presto, and deploying more vswitches will
not further improve the performance much. This implies that
deploying 30 vswitches (which is 30% of the number of
ingress switches) is the best choice for topology (a). We then
exam network topologies (b) and (c). As shown in Figs. 25-26,
there only deploys 16 vswitches, about 50% or 25% of
the number of ingress switches in (b) and (c), respectively,
to achieve a good tradeoff between performance and cost.

According to the simulation results, we can make some con-
clusions. First, by Figs. 6-14, as more vswitches are deployed,

Fig. 26. Link Load Ratio vs. Number of vSwitches for Topology (c).

our CRBVR algorithm can control more flows and the network
performance becomes better. Second, by Figs. 9-14 and 18-23,
CRBVR has better routing performance compared with OSPF
and ECMP on different topologies, which means our CRBVR
algorithm can perform well on a wide range of occasions.
Moreover, CRBVR can achieve similar routing performance
compared with Presto while reducing the number of deployed
vswitches by 70%, 50%, 75% on three topologies. Third,
by Figs. 24-26, when implementing our CRBVR algorithm,
we need to deploy a different number of vswitches for different
topologies. However, as long as we deploy an appropriate
number of vswitches in an SDN, we do not need to deploy
more switches as the number of flows increases.

VI. CONCLUSION

In this paper, we have studied how to achieve load balancing
through efficient vswitch deployment in an SDN. We formulate
the joint optimization of vswitch deployment and routing prob-
lem as an integer linear program. A rounding-based algorithm
with bounded approximation factors is proposed to solve the
JVR problem. Some practical issues are discussed to enhance
our load balancing mechanism. We implement the proposed
algorithm on an SDN testbed for experimental studies and use
simulations for large-scale investigation. The testing results
on the SDN platform and the extensive simulation results on
the Mininet show that our proposed method can reduce the
link load ratio by about 41.5% compared with the ECMP
method, and achieve almost the similar performance as Presto,
by deploying a small number of vswitches.

REFERENCES

[1] B. Pfaff et al., “The openflow switch,” Open Netw. Found., Menlo
Park, CA, USA, Tech. Rep. ONF TS-006, 2012. [Online]. Available:
http://openflowswitch.org

[2] C.-Y. Hong et al., “Achieving high utilization with software-driven wan,”
in Proc. ACM SIGCOMM, 2013, pp. 15–26.

[3] T. Wang, F. Liu, J. Guo, and H. Xu, “Dynamic SDN controller
assignment in data center networks: Stable matching with transfers,”
in Proc. INFOCOM, 2016, pp. 1–9.

[4] E. Haleplidis, J. H. Salim, S. Denazis, and O. Koufopavlou, “Towards
a network abstraction model for sdn,” J. Netw. Syst. Manage., vol. 23,
no. 2, pp. 309–327, 2015.

[5] E. Vanini, R. Pan, M. Alizadeh, P. Taheri, and T. Edsall, “Let it flow:
Resilient asymmetric load balancing with flowlet switching,” in Proc.
NSDI, 2017, pp. 407–420.

[6] H. Zhang, J. Zhang, W. Bai, K. Chen, and M. Chowdhury, “Resilient
datacenter load balancing in the wild,” in Proc. Conf. ACM Special
Interest Group Data Commun., 2017, pp. 253–266.

[7] A. Greenberg et al., “VL2: A scalable and flexible data center network,”
ACM SIGCOMM Comput. Commun. Rev., vol. 39, no. 4, pp. 51–62,
2009.

410 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 36, NO. 3, MARCH 2018

[8] M. Alizadeh et al., “CONGA: Distributed congestion-aware load balanc-
ing for datacenters,” ACM SIGCOMM Comput. Commun. Rev., vol. 44,
no. 4, pp. 503–514, 2014.

[9] J. Zhou et al., “WCMP: Weighted cost multipathing for improved
fairness in data centers,” in Proc. Ninth Eur. Conf. Comput. Syst., 2014,
p. 5.

[10] B. Stephens, A. Cox, W. Felter, C. Dixon, and J. Carter, “PAST: Scalable
ethernet for data centers,” in Proc. 8th Int. Conf. Emerg. Netw. Experim.
Technol., 2012, pp. 49–60.

[11] G. Zhao, H. Xu, S. Chen, L. Huang, and P. Wang, “Deploying default
paths by joint optimization of flow table and group table in sdns,” in
Proc. IEEE ICNP, Oct. 2017, pp. 1–10.

[12] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks,” in Proc.
Netw. Syst. Design Implement. Symp. (NSDI), vol. 10. 2010, p. 19.

[13] J. Rasley et al., “Planck: Millisecond-scale monitoring and control
for commodity networks.” ACM SIGCOMM Comput. Commun. Rev.,
vol. 44, no. 4, pp. 407–418, 2015.

[14] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,
and S. Banerjee, “DevoFlow: Scaling flow management for high-
performance networks,” Comput. Commun. Rev., vol. 41, no. 4,
pp. 254–265, Aug. 2011.

[15] H. Xu, H. Huang, S. Chen, and G. Zhao, “Scalable software-defined
networking through hybrid switching,” in Proc. IEEE INFOCOM,
May 2017, pp. 1–9.

[16] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “On the effect
of forwarding table size on SDN network utilization,” in Proc. IEEE
INFOCOM, Apr. 2014, pp. 1734–1742.

[17] A. Wang, Y. Guo, F. Hao, T. Lakshman, and S. Chen, “Scotch:
Elastically scaling up SDN control-plane using vSwitch based overlay,”
in Proc. 10th ACM Int. Conf. Emerg. Netw. Experim. Technol., 2014,
pp. 403–414.

[18] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and A. Akella,
“Presto: Edge-based load balancing for fast datacenter networks,” ACM
SIGCOMM Comput. Commun. Rev., vol. 45, no. 4, pp. 465–478, 2015.

[19] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 38, no. 4, pp. 63–74, 2008.

[20] Open vSwitch: Open Virtual Switch. Accessed: Sep. 5, 2017. [Online].
Available: http://openvswitch.org/

[21] S. Even, A. Itai, and A. Shamir, “On the complexity of time table and
multi-commodity flow problems,” in Proc. 16th Annu. Symp. Found.
Comput. Sci., 1975, pp. 184–193.

[22] A. Srinivasan, “Approximation algorithms via randomized rounding:
A survey,” in Series in Advanced Topics in Mathematics, Polish Scientific
Publishers PWN. Polish, Warszawa, 1999, pp. 9–71.

[23] H. Xu, Z. Yu, X.-Y. Li, C. Qian, L. Huang, and T. Jung, “Real-time
update with joint optimization of route selection and update scheduling
for sdns,” in Proc. IEEE 24th Int. Conf. Netw. Protocols (ICNP),
Nov. 2016, pp. 1–10.

[24] T. Thomas, OSPF Network Design Solutions. London, U.K.: Pearson
Education, 2003.

[25] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimiza-
tion: Algorithms and Complexity. North Chelmsford, MA, USA:
Courier Corporation, 1998.

[26] The Mininet Platform. Accessed: Sep. 5, 2017. [Online]. Available:
http://mininet.org/

[27] K.-K. Yap et al., “Taking the edge off with Espresso: Scale, reliability
and programmability for global Internet peering,” in Proc. Conf. ACM
Special Interest Group Data Commun., 2017, pp. 432–445.

[28] J.-M. Kang, T. Lin, H. Bannazadeh, and A. Leon-Garcia, “Software-
defined infrastructure and the SAVI testbed,” in Proc. Int. Conf. Testbeds
Res. Infrastruct., 2014, pp. 3–13.

[29] G.114: One-Way Transmission Time, document G. 114, R. ITU-T and
I. Recommend, 2000, vol. 18.

[30] The Network Topology From the Monash University. Accessed:
Sep. 5, 2017. [Online]. Available: http://www.ecse.monash.edu.
au/twiki/bin/view/InFocus/LargePacket-switchingNetworkTopologies

[31] S. Azizi, F. Safaei, and N. Hashemi, “On the topological properties of
hyperx,” J. Supercomput., vol. 66, no. 1, pp. 572–593, 2013.

[32] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken,
“The nature of data center traffic: Measurements & analysis,” in Proc.
9th ACM SIGCOMM Conf. Internet Meas., 2009, pp. 202–208.

[33] B. Gnedenko and I. Kovalenko, Introduction to Queuing Theory
(Mathematical Modeling). Boston, MA, USA: Birkhäuser Boston,
1989.

Xuwei Yang received the B.S. degree in network
engineering from Chang’an University in 2016. He
is currently pursuing the M.S. degree in computer
science with the University of Science and Technol-
ogy of China. His main research interests include
software-defined networks.

Hongli Xu (M’08) received the B.S. degree in
computer science from the University of Science
and Technology of China in 2002, and the Ph.D.
degree in computer software and theory from the
University of Science and Technology of China
in 2007. He is currently an Associate Professor with
the School of Computer Science and Technology,
University of Science and Technology of China.
He has authored or co-authored over 70 papers,
and held about 30 patents. His main research inter-
ests include software-defined networks, cooperative
communication, and vehicular ad hoc network.

Liusheng Huang received the M.S. degree in com-
puter science from the University of Science and
Technology of China in 1988. He is currently a
Senior Professor and Ph.D. Supervisor with the
School of Computer Science and Technology, Uni-
versity of Science and Technology of China. He
has authored or co-authored six books and over
300 journal/conference papers. His research interests
are in the areas of Internet of Thing, vehicular ad
hoc network, information security, and distributed
computing.

Gongming Zhao received the B.S. degree in Internet
of Things from Shandong University, Jinan, China,
in 2015. He is currently pursuing the Ph.D. degree in
computer science with the University of Science and
Technology of China. His main research interests are
software-defined network and Internet of Things.

Peng Xi received the B.S. degree in computer
science and the M.S. degree in computer software
and theory from the University of Science and
Technology of China in 2004 and 2010, respectively,
where he is currently pursuing the Ph.D. degree
with the School of Computer Science and Technol-
ogy. He is currently a Lecturer with the School of
Educational Science, Anhui Normal University. His
main research interest is software-defined networks,
wireless networks, and network security.

Chunming Qiao is currently a SUNY Distinguished
Professor and the Chair of the CSE Department.
He has been leading the Lab for Advanced Net-
work Design, Evaluation and Research University
at Buffalo, The State University of New York since
1993. His current research interests cover not only
the safety and reliability of various cyber physical
systems (such as transportation systems with con-
nected and autonomous vehicles, critical infrastruc-
tures involving power grid and communications
networks, and cloud services), but also algorithms

and protocols for the Internet of Things, including smartphone-based systems
and applications. He has published extensively with an h-index of over 69
(according to Google Scholar). Several of his papers have received the best
paper awards from IEEE and Joint ACM/IEEE venues. He holds seven U.S.
patents and served as a consultant for several IT and Telecommunications
companies since 2000. His research has been featured in BusinessWeek,
Wireless Europe, CBC, and New Scientists. He was elected to IEEE Fellow for
his contributions to optical and wireless network architectures and protocols.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

